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Figure 1: Engraving of Archimedes’ Burning Mirror by
Athanasius Kircher, German Renaissance Jesuit, 1602-
1680

Figure 2: Stirling engine with parabolic reflector by
Stirling Energy Systems
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� Assume a line array of N identical antennas, fed
by correlated replicas of a waveform, which are:

– symmetrically attenuated across the aperture,
with taper |an|

– linearly phase shifted modulo 360◦ (or time
delayed) across the aperture, with progressive
phase shift β = −k0 dx sin θ0 (or with

progressive time delay ∆τ = dx sin θ0
c

)

� The normalized far field of the line array (along

the x-axis), ~E(r, θ, φ), can be written as the

product of the element factor, ~f(θ, φ), and a
scalar array factor, F (θ, φ).
~E(r, θ, φ) = ~f(θ, φ)F (θ, φ) =

~f(θ, φ)
∑N/2
n = −N/2

|an| e
j k0

2n−1
2

dx (u−u0)

in which:

– k0 = 2π
λ0

, u = sin θ, u0 = sin θ0

– r =
√

x2 + y2 + z2

– The polarization of the line array is
determined by the element factor, ~f(θ, φ)

dx
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Figure 3: Electronically scanned array principle (line
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Derivation of expressions for the average directivity
and the side lobe level variance in the presence of
random (Gaussian distributed) phase errors, Φn.
Assume a uniform taper (|an| = 1):

� Average main beam radiation intensity:

– Assume θ0 = 0◦:

Fe(θ = 0◦, φ) =
N
∑

n=1

ejΦn =
N
∑

n=1

[cosΦn+j sinΦn]

– Assume Φn is small (
∑N
n=1 sinΦn ≈ 0):

Fe(θ = 0◦, φ) ≈
N
∑

n=1

cosΦn

≈
N
∑

n=1

[1−
1

2
Φn

2]

= N −
1

2

N
∑

n=1

Φn
2.

� Average main beam radiation intensity
(continued):

– The average main beam radiation intensity
equals:

F2
e (θ = 0◦, φ) =



N −
1

2

N
∑

n=1

Φn
2





2

= N
2
−N

N
∑

n=1

Φn
2 +

1

4

N
∑

k,l

Φn
2Φl

2.

– Assume a phase error variance Φ2 = Φn2,
which implies:

Φn2Φl
2 = Φ4 ≪ 4NΦ2

– The average main beam radiation intensity
becomes:

F 2
e (θ = 0◦, φ) = N2(1− Φ2).



Electronically Scanned Arrays

EuCAP 2011 Short Course on Electronically Scanned Reflectarrays, Rome, Italy Introduction – 8 / 52

� Sidelobe level variance:

– The perturbed array factor, evaluated at a
null of the error-free array pattern, becomes:

Fe(θ = θnull, φ) =
N
∑

n=1

ejβnejΦn

=
N
∑

n=1

ejβn [cosΦn + j sinΦn]

with βn = −k0(n− 1)dx sin θnull.

– At a null of the error-free array pattern, the
∑N
n=1 e

jβn cosΦn terms vanisha:

Fe(θ = θnull, φ) ≈ j
N
∑

n=1

ejβn sinΦn

≈ j
N
∑

n=1

ejβnΦn

acos x =
∑∞

n=0
(−1)n

(2n)!
x2n = 1 − x2

2!
+ x4

4!
− · · ·

� Sidelobe level variance (continued):

– The average radiation intensity, evaluated at
the null of the error-free array pattern,
becomes:

|Fe(θ = θnull, φ)|2

=





N
∑

n=1

ejβnΦn









N
∑

n=1

e−jβnΦn





=

N
∑

n=1

Φ2
n +

∑

k 6=l

ΦnΦle
j(βn−βl)

= NΦ
2

with Φn,Φl assumed uncorrelated.

– The sidelobe level variance, evaluated at a
null of the error-free array pattern, becomes:

σ2 =
|Fe(θ = θnull, φ)|2

D0
=
NΦ2

N2

=
Φ2

N
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� Average directivity:

– The average directivity De, can be calculated
from:

De(θ = 0◦, φ) =
4πF 2

e (θ = 0◦, φ)

Prad

=
N2

(

1− Φ2
)

N +NΦ2

= N
1− Φ2

1 + Φ2

≈ N
1

1 + Φ2

– The average directivity and gain loss become:

De

D
=

1

1 + Φ2

Ge

G
=

1

1 + Φ2

� Example:

– Assume a 4-bit phase shifter; the maximum
phase error is now ±11.25◦. The phase error
variance becomes:

Φ2 =
π2

3(22P )
= 0.0129 [rad2]

which yields a phase error standard deviation
of 6.5◦.

– Assume 64 antennas; the sidelobe level
variance and the average directivity loss
become:

σ2 =
Φ2

N
= −36.956 [dB]

De

D
=

1

1 + Φ2
= −0.0557 [dB]
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Figures of merit [1–5]:

� Bandwidth

– Radar range resolution:

r = c
2BW

� Beam pointing error:

∆2 = Φ2
∑

A2
i x2

i
(

∑

Ai x2
i

)2

� EIRP × Gr/T

– Radar range equation:

Rmax = 4

√

√

√

√

λ
2
0 EIRP Gr/T σ

64π3 kB BW SNRmin

– Scan loss:
Ge
G

=
(cos θ)n

1+δ2+Φ2

� Field of view:

d
λ0

≤ 1
1+sin θmax

d

EIRP x Gr/T
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Figure 4: Figures of merit for an electronically scanned array set the
radar’s ability to search and track targets.
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Figures of merit [1–5]:
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Figure 5: Figures of merit for an electronically scanned array set the
radar’s ability to search and track targets.
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Figure 5: Figures of merit for an electronically scanned array set the
radar’s ability to search and track targets.

� Amplitude error variance:

δ̂2 = S2
AATT

+ S2
APS

� Phase error variance:

Φ̂2 = S2
PATT

+ S2
PPS

+ 1
3

π2

22P
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Figure 6: Figures of merit for an electronically scanned array set the
radar’s ability to search and track targets.
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Figures of merit [1–5]:
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Figure 7: Figures of merit for an electronically scanned array set the
radar’s ability to search and track targets.
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Figures of merit (continued):

� Half-power beamwidth:

HPBW = 0.886Bb
λ0
L

� Phase center stability

� Polarization purity

� Radar cross section

� Scalability (2-D, 3-D)

� Sidelobe level:

SLdB = 10 log10
δ2+Φ2

N ǫA

� Size

� Thermal dissipation

� Weight
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Figure 8: Figures of merit for an electronically scanned array set the
radar’s ability to search and track targets.
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Figures of merit (continued):
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Figure 9: Figures of merit for an electronically scanned array set the
radar’s ability to search and track targets.

� The distance between the phase center and a point on the mean

beam axis is λ0
2π

d2
ψ(θ,φ)

d θ2
|θ=θ0 , in which ψ(θ, φ) is the far field

phase pattern, and is often frequency-variant.
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Figures of merit (continued):
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Figure 10: Figures of merit for an electronically scanned array set the
radar’s ability to search and track targets.
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Figures of merit (continued):
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Figures of merit (continued):

� Half-power beamwidth:

HPBW = 0.886Bb
λ0
L

� Phase center stability

� Polarization purity

� Radar cross section

� Scalability (2-D, 3-D)

� Sidelobe level:

SLdB = 10 log10
δ2+Φ2

N ǫA

� Size

� Thermal dissipation

� Weight

d

EIRP x Gr/T

FIELD OF VIEWELECTRONICALLY

SCANNED

ARRAY

1/BW

BEAM POINTING

ERROR

TARGET

- ANGLE

- RANGE

- VELOCITYHALF POWER

BEAMWIDTH

PULSE-DELAY RANGING

SIDELOBE

LEVEL

POLARIZATION

Figure 11: Figures of merit for an electronically scanned array set the
radar’s ability to search and track targets.
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Figure 11: Figures of merit for an electronically scanned array set the
radar’s ability to search and track targets.

� Amplitude error variance:

δ̂2 = S2
AATT

+ S2
APS

� Phase error variance:

Φ̂2 = S2
PATT

+ S2
PPS

+ 1
3

π2

22P
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Figures of merit (continued):
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Figure 12: Array factor, F (θ, φ), realized with 8 bit attenuators (40 dB attenuation range), and 8 bit phase
shifters. The main beam is scanned to θ = 55◦, φ = 40◦. Calculated with APAS [6].
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Figure 13: Array factor, F (θ, φ), realized with 3 bit attenuators (30 dB attenuation range), and 8 bit phase
shifters. The main beam is scanned to θ = 55◦, φ = 40◦. Calculated with APAS [6].
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Design trade-offs are necessary in the selection of:

� Aperture: real beam or synthetic aperture (SAR)

� Antenna: connected or folded dipole, microstrip, tapered
slot, or waveguide antenna

� Beamforming: analog (IF, optical, RF), digital (DBF)

� Feed network: constrained (corporate, series) or space-fed
(lens array, reflect array). Extensions include calibration,
monopulse, and SLB feed networks.

� Grid: periodic (hexagonal, rectangular, or triangular) or
aperiodic (sparse)

� Manufacturing: 2-D arrays: brick, stick, tile [7] or tray, 3-D
arrays: geodesic dome, multifaceted (pyramidal frusta)

� Polarization: vertical (taking advantage of Brewster angle for
ground-based and naval platforms), polarimetric
(all-weather, speckle reduction (FOPEN SAR))

� RF power amplification: active (SSPA) [8], passive
subarrays, passive (VED)

� Scanning: frequency-, space-, or time-orthogonal
waveform-coherent pencil beams, or multiple input multiple
output (MIMO) waveform-orthogonal wide beams
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(b) DOUBLY

EXPONENTIALLY

TAPERED SLOT

ANTENNA (DETSA)

(SLOTLINE)

(a) CONNECTED 

ARRAY (CPS)

(c) PATCH 

(MICROSTRIP) 

Figure 14: Antennas: (a) Connected array,
(b) DETSA, and (c) microstrip.
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Design trade-offs are necessary in the selection of:

� Aperture: real beam or synthetic aperture (SAR)

� Antenna: connected or folded dipole, microstrip, tapered
slot, or waveguide antenna

� Beamforming: analog (IF, optical, RF), digital (DBF)

� Feed network: constrained (corporate, series) or space-fed
(lens array, reflect array). Extensions include calibration,
monopulse, and SLB feed networks.

� Grid: periodic (hexagonal, rectangular, or triangular) or
aperiodic (sparse)

� Manufacturing: 2-D arrays: brick, stick, tile [7] or tray, 3-D
arrays: geodesic dome, multifaceted (pyramidal frusta)

� Polarization: vertical (taking advantage of Brewster angle for
ground-based and naval platforms), polarimetric
(all-weather, speckle reduction (FOPEN SAR))

� RF power amplification: active (SSPA) [8], passive
subarrays, passive (VED)

� Scanning: frequency-, space-, or time-orthogonal
waveform-coherent pencil beams, or multiple input multiple
output (MIMO) waveform-orthogonal wide beams
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Figure 15: Beamforming networks: (a)
DBF, (b) IF, and (c) RF
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Design trade-offs are necessary in the selection of:

� Aperture: real beam or synthetic aperture (SAR)

� Antenna: connected or folded dipole, microstrip, tapered
slot, or waveguide antenna

� Beamforming: analog (IF, optical, RF), digital (DBF)

� Feed network: constrained (corporate, series) or space-fed
(lens array, reflect array). Extensions include calibration,
monopulse, and SLB feed networks.

� Grid: periodic (hexagonal, rectangular, or triangular) or
aperiodic (sparse)

� Manufacturing: 2-D arrays: brick, stick, tile [7] or tray, 3-D
arrays: geodesic dome, multifaceted (pyramidal frusta)

� Polarization: vertical (taking advantage of Brewster angle for
ground-based and naval platforms), polarimetric
(all-weather, speckle reduction (FOPEN SAR))

� RF power amplification: active (SSPA) [8], passive
subarrays, passive (VED)

� Scanning: frequency-, space-, or time-orthogonal
waveform-coherent pencil beams, or multiple input multiple
output (MIMO) waveform-orthogonal wide beams
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Figure 16: Beamforming networks: optical
(Tx)
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Design trade-offs are necessary in the selection of:

� Aperture: real beam or synthetic aperture (SAR)

� Antenna: connected or folded dipole, microstrip, tapered
slot, or waveguide antenna

� Beamforming: analog (IF, optical, RF), digital (DBF)

� Feed network: constrained (corporate, series) or space-fed
(lens array, reflect array). Extensions include calibration,
monopulse, and SLB feed networks.

� Grid: periodic (hexagonal, rectangular, or triangular) or
aperiodic (sparse)

� Manufacturing: 2-D arrays: brick, stick, tile [7] or tray, 3-D
arrays: geodesic dome, multifaceted (pyramidal frusta)

� Polarization: vertical (taking advantage of Brewster angle for
ground-based and naval platforms), polarimetric
(all-weather, speckle reduction (FOPEN SAR))

� RF power amplification: active (SSPA) [8], passive
subarrays, passive (VED)

� Scanning: frequency-, space-, or time-orthogonal
waveform-coherent pencil beams, or multiple input multiple
output (MIMO) waveform-orthogonal wide beams

Receiver calibration:

� Function: Equalisation of the receiver
transfer functions, HRx

k , is performed
during radar operation to cope with
aging or temperature
variations [9–11].

ARRAY

ELEMENT

k

REFERENCE

PLANE

CALIBRATION SIGNAL

Hk
CAL

REFERENCE

SIGNAL

(FAR FIELD)
Hk

Rx

CALIBRATION

ELEMENT

PLANE WAVE

Hk
FF

ak
 = Hk
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Figure 17: The multi-element phase tog-
gling (MEP) technique [11] calibrates
groups of elements simultaneously. It uses
a calibration network or exploits mutual
coupling.
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Design trade-offs are necessary in the selection of:

� Aperture: real beam or synthetic aperture (SAR)

� Antenna: connected or folded dipole, microstrip, tapered
slot, or waveguide antenna

� Beamforming: analog (IF, optical, RF), digital (DBF)

� Feed network: constrained (corporate, series) or space-fed
(lens array, reflect array). Extensions include calibration,
monopulse, and SLB feed networks.

� Grid: periodic (hexagonal, rectangular, or triangular) or
aperiodic (sparse)

� Manufacturing: 2-D arrays: brick, stick, tile [7] or tray, 3-D
arrays: geodesic dome, multifaceted (pyramidal frusta)

� Polarization: vertical (taking advantage of Brewster angle for
ground-based and naval platforms), polarimetric
(all-weather, speckle reduction (FOPEN SAR))

� RF power amplification: active (SSPA) [8], passive
subarrays, passive (VED)

� Scanning: frequency-, space-, or time-orthogonal
waveform-coherent pencil beams, or multiple input multiple
output (MIMO) waveform-orthogonal wide beams

(a) RECTANGULAR (PERIODIC)

(b) TRIANGULAR (PERIODIC)

(c) SPARSE (APERIODIC)

Figure 18: Grid: (a) rectangular (periodic),
(b) triangular (periodic), (c) sparse (aperi-
odic).
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Design trade-offs are necessary in the selection of:

� Aperture: real beam or synthetic aperture (SAR)

� Antenna: connected or folded dipole, microstrip, tapered
slot, or waveguide antenna

� Beamforming: analog (IF, optical, RF), digital (DBF)

� Feed network: constrained (corporate, series) or space-fed
(lens array, reflect array). Extensions include calibration,
monopulse, and SLB feed networks.

� Grid: periodic (hexagonal, rectangular, or triangular) or
aperiodic (sparse)

� Manufacturing: 2-D arrays: brick, stick, tile [7] or tray, 3-D
arrays: geodesic dome, multifaceted (pyramidal frusta)

� Polarization: vertical (taking advantage of Brewster angle for
ground-based and naval platforms), polarimetric
(all-weather, speckle reduction (FOPEN SAR))

� RF power amplification: active (SSPA) [8], passive
subarrays, passive (VED)

� Scanning: frequency-, space-, or time-orthogonal
waveform-coherent pencil beams, or multiple input multiple
output (MIMO) waveform-orthogonal wide beams

Figure 19: Manufacturing: brick assembly.

Figure 20: Manufacturing: tile assembly.
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Design trade-offs are necessary in the selection of:

� Aperture: real beam or synthetic aperture (SAR)

� Antenna: connected or folded dipole, microstrip, tapered
slot, or waveguide antenna

� Beamforming: analog (IF, optical, RF), digital (DBF)

� Feed network: constrained (corporate, series) or space-fed
(lens array, reflect array). Extensions include calibration,
monopulse, and SLB feed networks.

� Grid: periodic (hexagonal, rectangular, or triangular) or
aperiodic (sparse)

� Manufacturing: 2-D arrays: brick, stick, tile [7] or tray, 3-D
arrays: geodesic dome, multifaceted (pyramidal frusta)

� Polarization: vertical (taking advantage of Brewster angle for
ground-based and naval platforms), polarimetric
(all-weather, speckle reduction (FOPEN SAR))

� RF power amplification: active (SSPA) [8], passive
subarrays, passive (VED)

� Scanning: frequency-, space-, or time-orthogonal
waveform-coherent pencil beams, or multiple input multiple
output (MIMO) waveform-orthogonal wide beams

(a) CLOCKWISE (RH) ROTATION

(b) POLARIZATION ELLIPSE

MAJOR AXIS MINOR AXIS

Figure 21: Polarization: (a) rotation of
plane electromagnetic wave, (b) polariza-
tion ellipse at z = 0 as a function of time
[12].
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Design trade-offs are necessary in the selection of:

� Aperture: real beam or synthetic aperture (SAR)

� Antenna: connected or folded dipole, microstrip, tapered
slot, or waveguide antenna

� Beamforming: analog (IF, optical, RF), digital (DBF)

� Feed network: constrained (corporate, series) or space-fed
(lens array, reflect array). Extensions include calibration,
monopulse, and SLB feed networks.

� Grid: periodic (hexagonal, rectangular, or triangular) or
aperiodic (sparse)

� Manufacturing: 2-D arrays: brick, stick, tile [7] or tray, 3-D
arrays: geodesic dome, multifaceted (pyramidal frusta)

� Polarization: vertical (taking advantage of Brewster angle for
ground-based and naval platforms), polarimetric
(all-weather, speckle reduction (FOPEN SAR))

� RF power amplification: active (SSPA) [8], passive
subarrays, passive (VED)

� Scanning: frequency-, space-, or time-orthogonal
waveform-coherent pencil beams, or multiple input multiple
output (MIMO) waveform-orthogonal wide beams

MAGNETIC-DIPOLE

(SMALL LOOP)

RESULTANT

ELECTRIC DIPOLE

Figure 22: Polarization: Huygens’ source
[13].
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Design trade-offs are necessary in the selection of:

� Aperture: real beam or synthetic aperture (SAR)

� Antenna: connected or folded dipole, microstrip, tapered
slot, or waveguide antenna

� Beamforming: analog (IF, optical, RF), digital (DBF)

� Feed network: constrained (corporate, series) or space-fed
(lens array, reflect array). Extensions include calibration,
monopulse, and SLB feed networks.

� Grid: periodic (hexagonal, rectangular, or triangular) or
aperiodic (sparse)

� Manufacturing: 2-D arrays: brick, stick, tile [7] or tray, 3-D
arrays: geodesic dome, multifaceted (pyramidal frusta)

� Polarization: vertical (taking advantage of Brewster angle for
ground-based and naval platforms), polarimetric
(all-weather, speckle reduction (FOPEN SAR))

� RF power amplification: active (SSPA) [8], passive
subarrays, passive (VED)

� Scanning: frequency-, space-, or time-orthogonal
waveform-coherent pencil beams, or multiple input multiple
output (MIMO) waveform-orthogonal wide beams

H-PLANE 45°

E-PLANE 45°
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Figure 23: Polarization: Ludwig 2 & 3 def-
inition of co- and crosspolarization for a
dipole along the y-axis.
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Design trade-offs are necessary in the selection of:

� Aperture: real beam or synthetic aperture (SAR)

� Antenna: connected or folded dipole, microstrip, tapered
slot, or waveguide antenna

� Beamforming: analog (IF, optical, RF), digital (DBF)

� Feed network: constrained (corporate, series) or space-fed
(lens array, reflect array). Extensions include calibration,
monopulse, and SLB feed networks.

� Grid: periodic (hexagonal, rectangular, or triangular) or
aperiodic (sparse)

� Manufacturing: 2-D arrays: brick, stick, tile [7] or tray, 3-D
arrays: geodesic dome, multifaceted (pyramidal frusta)

� Polarization: vertical (taking advantage of Brewster angle for
ground-based and naval platforms), polarimetric
(all-weather, speckle reduction (FOPEN SAR))

� RF power amplification: active (SSPA) [8], passive
subarrays, passive (VED)

� Scanning: frequency-, space-, or time-orthogonal
waveform-coherent pencil beams, or multiple input multiple
output (MIMO) waveform-orthogonal wide beams
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Figure 24: RF power amplification: (a) An
active electronically scanned array (AESA),
and (b) a passive electronically scanned ar-
ray (PESA).
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Design trade-offs are necessary in the selection of:

� Aperture: real beam or synthetic aperture (SAR)

� Antenna: connected or folded dipole, microstrip, tapered
slot, or waveguide antenna

� Beamforming: analog (IF, optical, RF), digital (DBF)

� Feed network: constrained (corporate, series) or space-fed
(lens array, reflect array). Extensions include calibration,
monopulse, and SLB feed networks.

� Grid: periodic (hexagonal, rectangular, or triangular) or
aperiodic (sparse)

� Manufacturing: 2-D arrays: brick, stick, tile [7] or tray, 3-D
arrays: geodesic dome, multifaceted (pyramidal frusta)

� Polarization: vertical (taking advantage of Brewster angle for
ground-based and naval platforms), polarimetric
(all-weather, speckle reduction (FOPEN SAR))

� RF power amplification: active (SSPA) [8], passive
subarrays, passive (VED)

� Scanning: frequency-, space-, or time-orthogonal
waveform-coherent pencil beams, or multiple input multiple
output (MIMO) waveform-orthogonal wide beams
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f1
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d
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d
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T/R
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Figure 25: Electronically scanned array
architectures: (a) frequency-orthogonal
scanning with a slotted waveguide, (b)
spatially-orthogonal scanning with a Rot-
man lens, (c) time-orthogonal scanning
with RF (TTD) phase shifters.
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Design trade-offs are necessary in the selection of (continued):

� RF technology: III-V compound semiconductor (AlN, GaAs, GaN [1], InP, InSb), ferrite, ferroelectric, RF
MEMS, silicon-based semiconductor (LDMOS, RF CMOS, SiC and SiGe), and vacuum electronics

Table I: RF technology versus AESA architecture

Active Electronically Scanned Array (AESA)

Analog Beamforming DBF (Rx) [2]

IF (T/R) RF (T/R) Optical [3–6]

III/V Compound GaAs HBT, T/R HPA, LNA, MFCa EAM/EOM Driver, LNA

Semiconductors mHEMT & pHEMT HPA, LNA, TIA

GaN HEMT T/R HPA, Limiter, LNA, T/R Switch Limiter, LNA

InP DHBT & HEMT Rx LNA LNA LNA, TIA LNA

p-n & p-i-n Diodes T/R Limiter Limiter Limiter, Photodiode Limiter

Ferroelectrics T/R

Ferrites T/R Circulator Circulator

Packaging Ceramic T/R LTCC LTCC LTCC LTCC

Organic Rx LCP, QFN LCP, QFN LCP, QFN LCP, QFN

RF MEMS T/R T/R switch MFC, T/R Switch

Silicon-Based LDMOS Tx HPA (L/S-band)

Semiconductors p-n & p-i-n Diodes T/R Limiter Limiter, Photodiode Limiter

RF CMOS & T/R A/D, Control Loops, DDS A/D, Control Loops, A/D, Control Loops,

SiGe:C BiCMOS I2C/SPI, LNA, MFC, Mixer, VCO DDS, I2C/SPI, LNA, I2C/SPI, LNA,

Mixer, VCO Mixer, STC

Pulse Compression, VCO

a MFC: A multi-function chip contains an attenuator, a (true-time-delay) phase shifter, and SPDT switches, as well as amplifiers.
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Design trade-offs are necessary in the selection of (continued):

� RF technology: III-V compound semiconductor (AlN, GaAs, GaN [1], InP, InSb), ferrite, ferroelectric, RF
MEMS, silicon-based semiconductor (LDMOS, RF CMOS, SiC and SiGe), and vacuum electronics

Table II: RF technology versus PESA architecture

Passive Subarray Passive Electronically Scanned Array (PESA)

Analog Beamforming Analog Beamforming

RF (T/R) RF (T/R)

Lens Arrays Reflect Arrays Switched BFNa

III/V Compound GaAs HBT, T/R

Semiconductors mHEMT & pHEMT

GaN HEMT T/R

InP DHBT & HEMT Rx

p-n & p-i-n Diodes T/R (TTD) Phase Shifter (TTD) Phase Shifter SPNT Switch

Ferroelectrics T/R (TTD) Phase Shifter (TTD) Phase Shifter

Ferrites T/R Phase Shifter Phase Shifter

Packaging Ceramic T/R LTCC

Organic Rx LCP/Duroid, QFN

RF MEMS T/R (TTD) Phase Shifter (TTD) Phase Shifter SPNT Switch

Silicon-Based LDMOS Tx

Semiconductors p-n & p-i-n Diodes T/R (TTD) Phase Shifter (TTD) Phase Shifter SPNT Switch

RF CMOS & T/R

SiGe:C BiCMOS

Vacuum Electronics Tx Klystron Klystron Klystron

Devices TWT TWT TWT

a A switched beamformer is a cascade of a single pole N throw (SPNT) switch and a beamformer (beamforming matrix (Butler matrix) or lens
(Luneburg lens, Rotman lens) or reflector based focal plane scanner).
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� Function: Antennas transform guided waves into space waves.

Table III: Comparison of Antenna Elements for Wide-Angle Electronically Scanned Arrays
narrowband wideband ideal

microstrip waveguide & ind. iris bowtie bunny ear connected dipole connected
Touchard, et al. Keizer, et al. Smolders, et al. Lee, et al. Neto, et al. Huygens’

[1], 2009 [2, 3], 1991 [4], 2002 [5–7], 2003 [8, 9], 2009 source

Design characteristics

Directionalitya unidirectional unidirectional bidirectional bidirectional bidirectional

Feed, ZIN microstrip, 50 Ω waveguide, ZTE10
twin-lineb, 115 Ω slotline, 50π Ω CPS, 120π Ω CPS, 120π Ω

Feed modec single-ended TE10 differentialb differential differential differential
Manufacturing tile, laminate brick, waveguide brick brick brick tile, laminate

Mutual coupling usaged no, metal fence & yes, WAIM no no yes, connected yes, connected
cavity backing

Polarizatione single-polarized single-polarized single-polarized dual-polarized single-polarized dual-polarized

a Front to back ratio: The front to back ratio of bidirectional broadside radiators can be improved using cavity or reflector (ground (GND)
plane) backing, or dielectric lens, resonator or superstrate front-ends, at the expense of bandwidth, group velocity dispersion (GVD) and
phase center stability.

b Feed mode: A hockey stick balun is used in [4] to transit the differential twin-line mode to a single-ended microstrip mode.
c Bandwidth: Wideband antenna elements have differential feeds. Differentially-fed antenna elements might suffer from common mode
radiation and resonances.

d Mutual coupling usage: best friend (wide angle impedance matching (WAIM) layers induce leaky surface waves to reduce the scan loss),
or worst enemy (cavity backing, metal fence, or pseudo-differential feeding prevent substrate mode and surface wave propagation and
scan blindness due to edge radiation)

e Cross polarization level: The minimum achievable Ludwig-3 cross polarization level (θ=45◦ ,φ=45◦) of an array of single-polarized and
dual-polarized electrical dipoles is -17 dB and -20 dB respectively. An array of connected Huygens’ sources is perfectly polarized over an
infinite bandwidth and at all scanning angles.
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Table III: Comparison of Antenna Elements for Wide-Angle Electronically Scanned Arrays (continued)
narrowband wideband ideal

microstrip waveguide & ind. iris bowtie bunny ear connected dipole connected
Touchard, et al. Keizer, et al. Smolders, et al. Lee, et al. Neto, et al. Huygens’

[1], 2009 [2, 3], 1991 [4], 2002 [5–7], 2003 [8], 2009 source

Figures of merit (VSWR < 2)

Active gain ≈ 0.9π @ fc ≈ 0.9π @ fc [3, 6] dBi [-8, 6] dBi ≈ 0.9π @ fc < π @ fc
a

Active RL (VSWR) 10 dB 9.5 dB (2:1) 9.5 dB (2:1) 15 dB 10 dB ∞

Bandwidth 2.7-3.3 GHz (20%) 30% 1.5-4.5 GHz (3:1)b,c 1-5 GHz (5:1)c 6-9 GHz (40%)c → ∞ for L → ∞
Cross polarizatione > -17 dB - - -15 dB > -17 dB 0

Field of view ± 60◦ ± 60◦ ± 50◦ ± 45◦ ± 45◦ ± 70◦

Phase center stability instable, Yagi-Udaf instable, WAIM instablea stablea stablea stable
RCS - - - - - 0
Scan loss, (cos θ)n - n=1.1 (E) n=1.3 (E) n=1.2 (E) n=1.3 (E) n=1 (E)

- n=1.1 (H) n=1.3 (H) n=1.2 (H) n=1.3 (H) n=1 (H)
Thickness, from GND plane - N/A λmin/4 λmin/4 λmin/4 N/A, no GND plane

f Yagi-Uda directors (multi-stacked patches for example) with varying resonant length increase the bandwidth and the gain, but the GVD, the phase
center instability, and the scan loss as well. On-line calibration can be used to stabilize the phase center.
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Figure 26: Connecting antenna elements in a revolutionary way could allow UWB antenna arrays with 100:1
bandwidth, capable of replacing as many as five conventional antennas, inventors James Maloney (left) and Paul
Friederich (right) of Georgia Tech Research Institute, Atlanta, GA [10].
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Mono-mode pyramidal horn with smooth walls (1897, J. C. Bose [11])

� Aperture field distribution: flared out TE10 mode with quadratic
phase error distribution in both directions. The amplitude taper is
uniform in the E-plane direction, and cosine in the H-plane
direction.

� Advantages:

– Bandwidth (impedance): limited by cut-off frequency of TE10
mode, and cut-off frequency of higher order modes

� Disadvantages:

– Aperture efficiency: low due to cosine taper in H-plane
direction

– Distortion

– Polarization: single-polarized. Perfectly straight field lines yield
zero Ludwig-3 cross-polarization in all planes

– Phase center: frequency-(in)variant (depends on flare angle
and length)

– Quadratic phase error distribution: yields directivity loss and
higher sidelobe levels, primarily in the E-plane due to the
uniform tapper. The quadratic phase error distribution requires
correction or an optimum gain design approach, which depends
on flare angle and length.

– Radiation pattern: asymmetrical due to asymmetrical taper

� Applications:

– Antenna measurements: standard gain pyramidal horn
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Figure 27: (a) Mono-mode pyramidal horn with smooth wall [1], (b)
Dual-mode pyramidal horn with smooth wall, in which the step excites
the TE12/TM12 mode. At the center frequency (narrowband), the
TE12/TM12 mode adds up in phase with the TE10 mode in the
aperture plane, to yield an aperture field distribution which is cosine
tapered in both directions and which has perfectly straight field lines [11].
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Mono-mode conical horn with smooth wall (1950, A. P. King [3])

� Aperture field distribution: flared out TE11 mode with quadratic
phase error distribution in both directions. The amplitude taper is
uniform in the E-plane direction, and cosine in the H-plane
direction.

� Advantages:

– Bandwidth (impedance): limited by cut-off frequency of TE11
mode, and cut-off of higher order modes

� Disadvantages:

– Aperture efficiency: low due to cosine taper in H-plane
direction

– Distortion

– Polarization: H, V, LHCP, RHCP possible. Significant
cross-polarization

– Phase center: frequency-(in)variant (depends on flare angle
and length)

– Quadratic phase error distribution: yields directivity loss and
higher sidelobe levels, primarily in the E-plane due to the
uniform tapper. It requires correction or an optimum gain
design approach, which depends on flare angle and length.

– Radiation pattern: asymmetrical due to asymmetrical taper,
despite physical symmetry

� Applications:

– Antenna measurements: standard gain conical horn
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Figure 28: (a) Mono-mode conical horn with smooth wall [3], (b)
Dual-mode conical horn with smooth wall (Potter horn), in which the
step excites the TM11 mode. At the center frequency, the TM11
mode adds up in phase with the TE11 mode in the aperture plane,
to yield an aperture field distribution which is cosine tapered in both
directions and which has perfectly straight field lines [10].
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Hybrid-mode soft horn (Scalar feed horn: 1964, A. F. Kay [2,11,12])

� Aperture field distribution: Flared-out balanced HE11 mode,
which resembles the Hermite-Gaussian TEM00 mode, and is
supported by a soft surface conical horn. The soft surface
represents a perfect magnetic conductor boundary condition for the
TM component and is obtained using transversal (axial)
corrugations in a metal wall or metal strips on a dielectric wall.
The aperture distribution is Gaussian tapered in both directions.

� Advantages:

– Bandwidth (radiation pattern): 1.8:1

– Distortion: HE11 mode has no cut-off frequency, allows
distortion-free transmission when supported by soft surface

– Polarization: H, V, LHCP, RHCP possible. Perfectly straight
field lines yield zero Ludwig-3 cross-polarization in all planes

– Radiation pattern: perfectly symmetrical (equal beamwidths)

– Sidelobes: low due to Gaussian amplitude taper

� Disadvantages:

– Aperture efficiency: low due to Gaussian amplitude taper

– Phase center: frequency-(in)variant (depends on flare angle
and length)

– Quadratic phase error distribution

� Applications:

– Single feed for reflector antenna (scalar feed horn)

Hybrid-mode hard horn (1987, E. Lier and P.-S. Kildal [4–7,11])

� Aperture field distribution: Flared-out TEM mode (degenerated
TE11, TM11, HE11 mode), which is supported by a hard
surface cylindrically-shaped horn. The hard surface represents a
PMC boundary condition for the TE component and is obtained
using longitudinal (radial) corrugations in a metal wall or metal
strips on a dielectric wall, and dielectric filling. The aperture field
distribution is uniformly tapered in both directions.

� Advantages:

– Aperture efficiency: high due to uniform amplitude taper

– Bandwidth (radiation pattern): < 1.8:1

– Distortion: TEM mode has no cut-off frequency, allows
distortion-free transmission when supported by hard surface

– Polarization: H, V, LHCP, RHCP possible. Perfectly straight
field lines yield zero Ludwig-3 cross-polarization in all planes

– Radiation pattern: perfectly symmetrical (equal beamwidths)

� Disadvantages:

– Phase center: frequency-(in)variant (depends on flare angle
and length)

– Quadratic phase error distribution

– Sidelobes: high due to uniform amplitude taper

� Applications:

– Focal plane array feed for multi-beam reflector antennas
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Figure 29: Soft surface horn

Figure 30: Hard surface horns (Courtesy of Dr. Lier
[5])
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UWB leaky lens antenna (2010, A. Neto [8,9])

� Principle: TEM mode leaky-wave radiation collimated by
plano-convex ellipsoidal lens

� Advantages:

– Bandwidth (radiation pattern): 5:1

– Distortion: TEM mode has no cut-off and allows
distortion-free transmission

– Phase center: frequency-invariant

– Quadratic phase error distribution: not applicable

– Radiation pattern: nearly symmetrical (equal beamwidths)

– Sidelobe level: low due to non-uniform taper

� Disadvantages:

– Aperture efficiency: low due to non-uniform taper. The
ellipsoidal lens can be shaped to yield a more uniform taper, at
the expense of bandwidth

– Polarization: single-polarized. Ludwig-3 cross-polarization level
of -15 dB.

� Applications:

– Single feed (UWB, non-uniform taper)

– Focal plane array feed (wideband, uniform taper)

Figure 31: (a) Cross section of the UWB leaky lens antenna, showing
the transmitted rays which focus energy toward broad side. (b) Side
view (H-plane cut) of the near field ray picture, highlighting leaky waves
existence zones, and the leaky wave angle, γLW , for a standard leaky
wave slot. (c) Photograph.
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Reflectors (214 B.C., Archimedes)

� Principle: A reflector antenna collimates RF energy (rays),
emanating from a feed antenna, of which the phase center
coincides with a focal point (caustic) of the reflector. Reflector
antennas (and horn feed antennas) are aperture antennas, of which
the aperture field distribution is related to the far field radiation
pattern by the inverse 2-D fourier transform. Ideally, the aperture
field distribution has:

– Amplitude distribution: 2-D symmetrical with low edge taper
in order to prevent spill-over [1]

– Phase distribution: planar

– Polarization: perfectly straight field lines

Deviation from an ideal aperture field distribution yields amplitude
and phase errors, and Ludwig-3 cross-polarizaton.

� Advantages:

– EIRP

� Disadvantages:

– Planar UWB electronically scanned reflectarrays require a
Mizuguchi-compensated offset inverse Cassegrain
configuration, or a fixed quadratic time delay distribution
across the aperture to emulate a parabolic reflector.

– Size, weight and wind resistance

� Applications:

– Microwave communication links, radar, radio astronomy

(a)

(b)

Figure 32: (a) A Mizuguchi-compensated offset-reflector has no aper-
ture blockage, zero Ludwig-3 cross-polarization in all planes, no second
order astigmatism, and minimal spill-over. (b) An axially-symmetric re-
flector provides the highest effective aperture multiplication factor, but
has non-zero Ludwig-3 cross-polarization in the non-principal planes,
which depends on the f/D ratio. Picture of Westerbork Synthesis Radio
Telescope (WSRT).
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Cassegrain & Gregorian dual-reflector antennas (1961, P.
Hannan [3–12])

� Principle: Folded optics; in a Cassegrain dual-reflector antenna,
the focal point of the concave main reflector is located behind the
convex (flat) subreflector, whereas in a Gregorian reflector system,
the focal point of the concave main reflector is located between
the main reflector and the concave subreflector a

� Advantages:

– Feed location: Cassegrain and Gregorian subreflectors are used
in order to put the feed and the bulky RF electronics (feed
antenna(s), polarizer(s), OMT(s), klystron) at the gravitational
center of the main reflector, and behind the main reflector.

– Gain and sidelobe level: reduction of spillover and minor lobe
radiation, by using additional degrees of freedom to shape the
aperture field distribution of the main reflector

– Size: ability to obtain an equivalent focal length much greater
than the physical length (Cassegrain)

– Cross-polarization level: low (Gregorian)

� Disadvantages:

– Size (Gregorian)

� Applications:

– Microwave communication links, radar, radio astronomy

aNot discussed: Dragonian (low cross-polarization level) and
Schwarzschild (low comatic aberration for focal plane scanning) forms.

GREGORIANCASSEGRAIN

INVERSE

CASSEGRAIN

Figure 33: Cassegrain (left) and Gregorian (right) dual-reflector an-
tennas [3]. Equivalent parabolas (dashed). Andrew Corp. 7.3 meter
Gregorian dual-reflector earth station antenna with C-, Ku-band capabil-
ities [2] (inset).
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Inverse Cassegrain (1961, P. Hannan [3,8, 10,13–15])

� Principle: Folded optics; in an inverse Cassegrain dual-reflector
antenna, the focal point of the concave subreflector is located
behind the convex (flat) main reflector.

� Advantages:

– Advantages of Cassegrain dual-reflector antennas

– Electronic scanning: The main reflector can be a planar
electronically scanned reflectarray.

– Size: very compact

– No need for waveguide rotary joint

� Disadvantages:

– Bandwidth: The axially-symmetric inverse Cassegrain
dual-reflector antenna requires a planar reflect array with
polarization twist (narrowband)

� Applications:

– Radar

– Radio astronomy

GIMBALLED

POLARIZATION TWIST

MIRROR 

(NARROWBAND)

WIRE GRID

SUBREFLECTOR

MONOPULSE

FEED

Figure 34: An inverse Cassegrain antenna comprises a feed illuminat-
ing a polarization-selective wire grid subreflector, which collimates the
RF field to illuminate a polarization twisting mirror [15].
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Figure 35: Linear circular polarizer in a ferrite Faraday
rotation phase shifter [1].
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Figure 36: Orthomode transducer for conical feed
horn. The drawing refers to a very small aperture ter-
minal (VSAT) application. BUC stands for block up-
converter. LNB stands for low noise block converter.
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� Function: TTD phase shifters provide (TTD) phase shift to steer the beam of an RF beamforming ESA.

� Design trade-offs are necessary in the selection of:

– Biasing: current-controlled, voltage-controlled
(electrodynamic (current flow), electrostatic
(no current flow))

– Design: (distributed) loaded-line [2–5],
reflect-type [6], switched LC network
(high-pass, low-pass) [7], switched-line [8–11],
vector modulator

– Differential (CPS, slotline) or single-ended
(CPW, microstrip) transmission line

– Phase shift versus time delay

– Quantization: analog or digital (4b, 5b)

– RF power amplification: active (unilateral) or
passive (reciprocal)
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� Function: TTD phase shifters provide (TTD) phase shift to steer the beam of an RF beamforming ESA.

� Design trade-offs are necessary in the selection of:

– Biasing: current-controlled, voltage-controlled
(electrodynamic (current flow), electrostatic
(no current flow))

– Design: (distributed) loaded-line [2–5],
reflect-type [6], switched LC network
(high-pass, low-pass) [7], switched-line [8–11],
vector modulator

– Differential (CPS, slotline) or single-ended
(CPW, microstrip) transmission line

– Phase shift versus time delay

– Quantization: analog or digital (4b, 5b)

– RF power amplification: active (unilateral) or
passive (reciprocal)
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� Function: TTD phase shifters provide (TTD) phase shift to steer the beam of an RF beamforming ESA.

� Design trade-offs are necessary in the selection of:

– Biasing: current-controlled, voltage-controlled
(electrodynamic (current flow), electrostatic
(no current flow))

– Design: (distributed) loaded-line [2–5],
reflect-type [6], switched LC network
(high-pass, low-pass) [7], switched-line [8–11],
vector modulator

– Differential (CPS, slotline) or single-ended
(CPW, microstrip) transmission line

– Phase shift versus time delay

– Quantization: analog or digital (4b, 5b)

– RF power amplification: active (unilateral) or
passive (reciprocal)
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� Function: TTD phase shifters provide (TTD) phase shift to steer the beam of an RF beamforming ESA.
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� Phase shifting

– Bandwidth:

BWmax < 0.886Bb
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� Function: TTD phase shifters provide (TTD) phase shift to steer the beam of an RF beamforming ESA.

� Design trade-offs are necessary in the selection of:

– Biasing: current-controlled, voltage-controlled
(electrodynamic (current flow), electrostatic
(no current flow))

– Design: (distributed) loaded-line [2–5],
reflect-type [6], switched LC network
(high-pass, low-pass) [7], switched-line [8–11],
vector modulator

– Differential (CPS, slotline) or single-ended
(CPW, microstrip) transmission line

– Phase shift versus time delay

– Quantization: analog or digital (4b, 5b)

– RF power amplification: active (unilateral) or
passive (reciprocal)

� Number of effective bits:

P̃ = 1
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log2 π2 − log2 3 (S2
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+ 1
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Table IV: Comparison of State-of-the-Art Distributed Loaded-Line Phase Shifters
Barker and Rebeiz Perruisseau-Carrier, et al. Lakshminarayanan and Weller Van Caekenberghe, et al.

[2], 1999 [3], 2006 [4], 2007 [5], 2008

Design characteristics

Analog or digital analog digital (1 bit) digital (1 bit) analog
Differential or single-ended single-ended single-ended single-ended differential
Drive voltage < 13 V 20 V 30-45 V < 7 V
Frequency 40 GHz 20 GHz 12 GHz 10 GHz
Substrate fused silica silicon fused silica borosilicate glass

ǫr = 3.78, tan δ = 0.0002 ǫr = 11.7, σ = 10 kΩ cm ǫr = 3.78, tan δ = 0.0002 ǫr = 5.1, tan δ = 0.006
RF MEMS technology fixed-fixed beam capacitive fixed-fixed beam capacitive cantilever & fixed-fixed beam

varactors switches fixed-fixed beam switches varactors
Transmission line CPW CPW CPW slotline

Figures of merit

Phase shift / length 11.8◦/mm 14.7◦/mm 35◦/mm 5.9◦/mm

Phase shift / noise figure 70◦/dB 72◦/dB 429◦/dB 28.2◦/dB
Time delay / length 0.8 ps/mm 2 ps/mm 8.1 ps/mm 1.6 ps/mm
Time delay / noise figure 4.9 ps/dB 10 ps/dB 99.3 ps/dB 7.8 ps/dB
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Vacuum electronics devices (1906, L. De Forest) [1–4]

� Principle: Slow-wave linear-beam tube amplifiers (klystrons,
TWTs) provide high-power amplification at microwave frequencies.
Fast-wave linear-beam tube amplifiers (gyro-klystrons, gyro-TWTs)
provide high-power amplification at millimeter-wave frequencies.

� Advantages:

– Bandwidth: wideband (TWT amplifiers are only wideband at
high output power levels.)

– Efficiency: up to 70%, higher than SSPA

– Frequency: up to 94 GHz, higher than SSPA

– Output power: up to 100 kW peak (pulse-Doppler radar) at 94
GHz

– Gain: high (klystron)

� Disadvantages:

– Phase noise: phase stable, but higher phase noise than SSPA

– High-voltage technology (kV)

– Reliability and lifetime: lower than SSPA (graceful
degradation)

– Warm-up delay (hot cathode requirement)

� Applications:

– Passive electronically scanned arrays, reflector systems
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Figure 37: (a) Representation of the principal parts of a three-cavity
klystron amplifier (b) Representation of the principle parts of a traveling
wave tube showing a helix slow-wave circuit shown for simplicity [4].
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Ferrite phase shifter (1958, Fruchaft)

� Principle: Faraday rotation (propagation in direction of bias) and
birefringence (propagation transverse to bias) at magnetic
resonance (gyrotropism). Examples of ferrites include yttrium iron
garnet (YIG), and ferrites composed of iron oxides and various
other elements such as aluminum, cobalt, manganese, and nickel

� Advantages:

– Linearity

– Power handling: up to 100 kW

� Disadvantages:

– Bandwidth: resonant

– Biasing: large magnetization current

– Insertion loss: low loss, bound by the Kramer-Krönig relation.
The higher the permeability, the higher the attenuation.

– Size: waveguide

� Applications:

– Control devices: phase shifters, switches and tunable
resonators and filters.

– Directional devices: isolators, circulators, and gyrators.

– Radar-absorbing materials or coatings.

Ho
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Figure 38: (a) Nonreciprocal latching (remanent) phase shifter, (b)
nonreciprocal Faraday rotation phase shifter, and (c) Reggia-Spencer
reciprocal phase shifter [1].
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Ferroelectricity (1920, J. Valasek)

� Principle: Ferroelectricity is a property of certain materials which
possess a spontaneous electric polarization that can be reversed by
the application of an external electric field. The term is used in
analogy to ferromagnetism, in which a material exhibits a
permanent magnetic moment. Ferromagnetism was already known
when ferroelectricity was discovered in 1920 in Rochelle salt by
Valasek. Thus, the prefix ferro, meaning iron, was used to describe
the property despite the fact that most ferroelectric materials do
not contain iron. Examples include barium strontium titanate
(BST), and lead zirconate titanate (PZT)a

� Advantages:

– Versatility: volumetric (waveguide) and thin film (circuit)

� Disadvantages:

– Insertion loss: bound by the Kramer-Krönig relation. The
higher the dielectric constant, the higher the attenuation.

– Supply voltage: High voltage

� Applications:

– Continuous transverse stubs (CTS) [2] and electronically
scanned reflect arrays

aNematic liquid crystals, such as the Merck nematic mixture BL037,
have similar properties [3].
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Figure 39: Continuous transverse stub (CTS) filled with a voltage
tunable ferroelectric [2].
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Enhancement-mode (normally-off) bulk nMOSFET (1960, Kahng and
Atalla)

� Principle: A MOSFET is a 3-terminal device, in which the n-type
surface channel resistance between two of the contacts (source,
drain) is capacitively controlled (MOS capacitor) by the third
(gate). In CG configuration, it can be used as an SPST switch
(ON-state: linear region, OFF-state: cut-off region).

� Advantages:

– Biasing: high-resistivity biasing improves isolation and linearity

– Power consumption: no static power consumption

– Switching time: limited by fT

� Disadvantages:

– BW, IL and isolation: high RON COFF product. IL
inversely related to gate width, which is limited by BW
(parasitics) and isolation requirements. Lateral field isolation
using deep (DTI) and shallow trench isolation (STI), vertical
field isolation using high-resistivity biasing of gate
(floating-gate), and buried-Nwell (double-well body floating
triple-well RF nMOSFET) or insulator (SOI)

– Power handling: limited by dielectric breakdown (vertical field,
VGSMAX

), hot electron injection (lateral field,

VDSMAX
) and electromigration (IDSMAX

).

� Applications:

– SPNT switch topologies: series-shunt (RON COFF ),
stacked (high-linearity), traveling-wave (wideband)

Figure 40: Enhancement-mode (normally-off) bulk nMOSFET oper-
ated (a) in the linear region (low VDS), (b) at onset of saturation, and
(c) beyond saturation (effective length is reduced) [4].
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AlGaAs/GaAs depletion-mode (normally-on) HEMT (1980, Mimura)

� Principle: The unique feature of the modulation doped FET
(high-electron mobility transistor) is the heterostructure, in which
the wide-energy-gap material is doped and carriers diffuse to the
undoped narrow-bandgap layer. At the heterointerface, a 2-D
electron gas (2DEG) n-type buried channel is formed [4].

� Advantages:

– Biasing: high-resistivity biasing (floating-gate) improves
isolation and linearity

– BW, IL and isolation: much lower RON COFF product, due
to high electron mobility of minority carriers in 2DEG channel
(no SiO2 − Si interface impurity scattering, strain caused by
indium insertion is used to increase the mobility even further in
pseudomorphic HEMTs (pHEMTs)). Mesa lateral field
isolation, and semi-insulating GaAs or SiC (GaN) substrate.

– Power consumption: no static power consumption

– Power handling: high for GaN HEMTs (wide-bandgap) and
field-plate GaAs pHEMTs. No doping-induced SiO2 − Si
interface hot electron injection

– Switching time: limited by fT

� Disadvantages:

– Cost (cost drivers: epitaxial growth (MBE, MOCVD), mesa
(ebeam lithography))

� Applications:

– See MOSFET

Figure 41: (top) Typical structure of MODFET, using the ba-
sic AlGaAs/GaAs system. (bottom) Energy-band diagrams for an
enhancement-mode (normally-off) MODFET at (left) equilibrium and
(right) onset of threshold [4].
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p-n Diode (1949, W. Shockley)

� Principle: A p-i-n diode is a p-n junction with an intrinsic layer
(i-layer) sandwiched between the p-layer and the n-layer. In
practice, the i-region is approximated by either a high-resistivity
p-layer (referred to as π-layer) or a high-resistivity n-layer (ν-layer).
It can be used as an SPST switch (ON-state: forward-biased,
OFF-state: reverse-biased), and as a varactor (reverse-biased).

� Advantages:

– BW, IL and isolation: lowest RON COFF product among
semiconductors. The RON COFF product is related to
contact resistance and forward-bias DC current (RON ), as
well as to width of intrinsic layer (COFF ). RP is high for
vertical p-i-n diodes, lower for lateral p-i-n diodes, which are
derived from InGaP or SiGe:C heterojunction bipolar transistors
(HBTs).

– Linearity and power handling: limited by forward and reverse
breakdown voltages

– Rectification: does not rectify like p-n diode

� Disadvantages:

– Biasing: high-resistivity biasing (wideband, power consuming),
RF chokes (narrowband)

– Power consumption: static power consumption. A low RON
requires a high forward-bias DC current.

– Switching time: faster than FET, RF MEMS

� Applications:

– See MOSFET
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Figure 42: (a) p-i-n Diode and corresponding equivalent circuits,
(b) RF voltage and current waveforms superimposed on p-i-n diode IV
characteristics [5].
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Electrostatically-actuated RF MEMS switch (1979, K.
Petersen [3–5,7,9, 10,14])

� Principle: The radio frequency microelectromechanical system (RF
MEMS) acronym refers to electronic components of which moving
sub-millimeter-sized parts provide RF functionality.

� Advantages:

– BW, IL and isolation: intrinsically wideband due to electrostatic
biasing and absence of parasitics, low insertion loss (high Q
factor) and high isolation, lowest RON COFF product

– Cost: fabrication process requires min. 3 masks [11].

– Linearity

– Power consumption: no static power consumption

– Power handling

� Disadvantages:

– Packaging: hermetic

– Reliability

– Switching time [6,8]

� Applications:

– SPNT switches: series-shunt, no need for stacked or
traveling-wave topologies

RF MEMS SPST SWITCH

(SHORT/THRU)

C. L. GOLDSMITH, ET AL.

RAYTHEON

RF MEMS RESONATOR

(RLC)

J. WANG, ET AL.

UNIV. OF MICHIGAN, 

 ANN ARBOR

RF MEMS SP8T SWITCH

(OPEN/THRU)

S. PRANONSATIT, ET AL.

IMPERIAL COLLEGE LONDON

RF MEMS VARACTORS

(C)
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UNIV. OF MICHIGAN, 
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Figure 43: (a) RF MEMS resonator, (b) RF MEMS SPST switch,
(c) RF MEMS SPNT switch, and (d) RF MEMS varactors.
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Electromechanical model: mass-
spring system [10]

� Mass:

m = 0.4 ρ l w t

� Spring constant (capacitive fixed-fixed beam):

k = 32E w
(

t
l

)3 (

27
49
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Figure 44: (a) a capacitive fixed-fixed beam RF MEMS switch,
connected in shunt to a CPW line, (b) an ohmic cantilever RF
MEMS switch, connected in series to a microstrip line.
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Electromechanical model: mass-
spring system [10]

� Mass:

m = 0.4 ρ l w t

� Spring constant (ohmic cantilever):

k = 2E w
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)3 1−(x/l)
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� Electrostatic force:
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Figure 45: (a) a capacitive fixed-fixed beam RF MEMS switch,
connected in shunt to a CPW line, (b) an ohmic cantilever RF
MEMS switch, connected in series to a microstrip line.
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In reality, RF MEMS beams are not flat but track the underlying topology and are bowed due to residual stress.

µ = 2.34 µm 

σ = 0.35 µm 

µ = 2.43 µm 

σ = 0.31 µm 

TRACK

DESIGN

Figure 46: Optical interferometry imagery (top) and
surface profile (bottom) of capacitive fixed-fixed beam
RF MEMS components fabricated using the conven-
tional fabrication process [1, 2]. The mean and stan-
dard deviation of the transverse beam profile are
shown.

TRACK

0.79 µm 

81 nm 

0.94 µm 

57 nm 

µ = 1.14 µm 

σ = 45 nm 

1.00 µm 

94 nm 

DESIGN

Figure 47: Optical interferometry imagery (top) and
surface profile (bottom) of capacitive fixed-fixed beam
RF MEMS components fabricated using the self-
aligned fabrication process [12]. The mean and stan-
dard deviation of the transverse beam profile are
shown.
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Small signal RF model for S-parameter
simulation: Cu/Cd [10]

� Up-state capacitance:

Cu = 1.4
ǫ0 A

g0+td/ǫd

� Quality factor:

Q = 1
ω RCu

� Down-state cap. (capacitive fixed-fixed beam):

Cd = 0.65
ǫ0 ǫd A

td

Large signal RF model for harmonic
balance simulation (IP3, P1dB):
memcapacitor (nonlinear capacitor with
hysteresis in the C-V curve) [10,13]

� Up-state capacitance:

Cu = 1.4
ǫ0 A

g(j ω)+td/ǫd

� Electrostatic force:

Fe(j ω) = − 1
2

Cu(j ω) v2
RMS(j ω)

g(j ω)

� Second law of Newton (frequency domain):

g(j ω) = g0 +
Fe(j ω)

k + j ω b − ω
2
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Figure 48: (a) a capacitive fixed-fixed beam RF MEMS switch,
connected in shunt to a CPW line, (b) an ohmic cantilever RF
MEMS switch, connected in series to a microstrip line.
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Small signal RF model for S-parameter
simulation: Cu/Rd [10]

� Up-state capacitance:

Cu = 1.4
ǫ0 A

g0+td/ǫd

� Quality factor:

Q = 1
ω RCu

� Down-state resistance (ohmic cantilever):

Rd

Large signal RF model for harmonic
balance simulation (IP3, P1dB):
memcapacitor (nonlinear capacitor with
hysteresis in the C-V curve) [10,13]

� Up-state capacitance:

Cu = 1.4
ǫ0 A

g(j ω)+td/ǫd

� Electrostatic force:

Fe(j ω) = − 1
2

Cu(j ω) v2
RMS(j ω)

g(j ω)

� Second law of Newton (frequency domain):

g(j ω) = g0 +
Fe(j ω)

k + j ω b − ω
2

m

C

R

z

l

W

AIR
w

k

m
L

V

g0

SUBSTRATE

CPW DIELECTRIC/

ELECTRODE

t

Cu/Cd

R

L

RF MODELELECTROMECHANICAL

MODEL

m

k

Fe

ANCHOR

BEAM

Cu

z

l

W

AIR

w

k

m
L

V

g0

SUBSTRATE

MICROSTRIP ELECTRODE

t

ANCHOR

BEAM

OHMIC CANTILEVER

CAPACITIVE FIXED-FIXED BEAM

Rd

DIMPLE gd

Cu L

Rd

x

(a)

(b)

Figure 49: (a) a capacitive fixed-fixed beam RF MEMS switch,
connected in shunt to a CPW line, (b) an ohmic cantilever RF
MEMS switch, connected in series to a microstrip line.
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Figure 50: rfmems.sourceforge.net
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